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Abstract In this paper, a genetic algorithm (GA) is proposed
as a search strategy for not only positive but also negative
quantitative association rule (AR) mining within databas-
es. Contrary to the methods used as usual, ARs are directly
mined without generating frequent itemsets. The proposed
GA performs a database-independent approach that does not
rely upon the minimum support and the minimum confidence
thresholds that are hard to determine for each database. In-
stead of randomly generated initial population, uniform pop-
ulation that forces the initial population to be not far away
from the solutions and distributes it in the feasible region uni-
formly is used. An adaptive mutation probability, a new oper-
ator called uniform operator that ensures the genetic diversity,
and an efficient adjusted fitness function are used for mining
all interesting ARs from the last population in only single run
of GA. The efficiency of the proposed GA is validated upon
synthetic and real databases.

Keywords Data mining · Quantitative association rules ·
Negative association rules · Genetic algorithm

1 Introduction

Data mining is the extraction of implicit, valid, and poten-
tially useful knowledge from large volumes of raw data [1].
The extracted knowledge must be not only accurate but also
readable, comprehensible and ease of understanding.

Association rule (AR) mining is one of the important re-
search problems in data mining field where the goal is to
derive multi-feature (attribute) correlations from databases.
In this study, the goal is to find positive and negative ARs
in quantitative databases without the necessity of previously
preparing the data. Itemsets are considered within the ante-
cedent or the consequent being negated. Then the rules to be
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E-mail: balatas@firat.edu.tr; eakin@firat.edu.tr
Tel.:+90-424-2370000
Fax : +90-424-2415526

considered are of the form:

B ∈ ¬[b1, b2] ⇒ C ∈ [c1, c2] ∧ D ∈ [d1, d2]

A ∈ ¬[a1, a2] ∧ B ∈ [b1, b2] ⇒ D ∈ ¬[d1, d2]

A ∈ [a1, a2] ∧ C ∈ [c1, c2] ⇒ B ∈ ¬[a1, a2]

∧D ∈ [d1, d2]

Here A, B, C, and D show the quantitative attributes,
¬[l1, l2] shows the intervals not in [l1, l2], and, l1 and l2 show
the lower and upper bound of the interval.

In order to get this objective, an efficient genetic algo-
rithm (GA) has been designed to simultaneously search for
intervals of quantitative attributes and the discovery of ARs
that these intervals conform in only single run. Furthermore,
a database-independent approach that does not rely upon the
minimum support and the minimum confidence thresholds
that are hard to determine for each database has been per-
formed. Contrary to the methods used as usual, ARs have
directly been mined without generating frequent itemsets.
Uniform population (UP) for initial population [2]; adaptive
mutation, a new operator called uniform operator (UO), and
an adjusted fitness function that will be described in Sect. 3
have been used for effectively mining all interesting positive
and negative quantitative association rules in the last popu-
lation of GA.

This paper is organized as follows. Section 2 describes
the quantitative and negative ARs with related works. Sec-
tion 3 explains the details of the algorithm. Section 4 briefly
describes the used databases and discusses the experimental
results. Finally Sect. 5 concludes the paper.

2 Quantitative and negative ARs

The Boolean AR mining problem over basket data was intro-
duced in [3]. In this and many algorithms proposed after-
wards for mining the ARs are divided into two stages: the
first is to find the frequent itemsets; the second is to use the
frequent itemsets to generate ARs. The mined rules have cer-
tain support and confidence values. Though Boolean ARs are
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meaningful, there are many other situations where data items
concerned are usually categorical or quantitative. That is why,
quantitative AR mining algorithms have been proposed in [4]
by first partitioning the attributes domains into small intervals
and combining adjacent intervals into larger one such that the
combined intervals will have enough supports. In fact, quanti-
tative problem has been transformed to a Boolean one. Some
researchers used geometric means to find numeric intervals
for quantitative values [5]. The found association rules had
no more than two numeric variables in the antecedent and
a single Boolean variable in the consequent. Aumann and
Lindell used the distribution of a numerical value as the cri-
teria for inclusion in the association rule [6]. Their contention
was that an association rule could be thought of as a popula-
tion subset (the rule consequent) exhibiting some interesting
behavior (the rule antecedent). They investigated two types of
quantitative rules: categorical⇒quantitative rules and quan-
titative⇒quantitative rules.

Limitations on these quantitative association rule algo-
rithms, in general, were the numbers of variables allowed in
either the consequent or antecedent of the rules. In addition,
it is not allowed for both Boolean and multiple quantitative
values to be in both the consequent and/or in the antecedent
of the rule.

Diverse researchers afterwards have used clustering tech-
niques, partitioning by means of fuzzy sets, however all of
them have in common the fact that they need information a
priori from the user.

The main problem of all these approaches is preparation
of the data before applying the algorithm. This preparation,
either by means of the user or by means of an automatic pro-
cess, conveys a loss of information because the rules will only
be generated departing from the partitions previously created.
Furthermore, except fuzzy sets these approaches have some
drawbacks. The first problem is caused by sharp boundary be-
tween intervals that is not intuitive with respect to human per-
ception. The algorithms either ignore or over-emphasize the
elements near the boundary of the intervals. Furthermore, dis-
tinguishing the degree of membership for the interval method
is not easy. The idea of using GA for mining only positive
frequent sets was first applied in [7]. However, the encoding
used in this work is not much effective for genetic operators
to be performed because of variable size. Furthermore, only
positive frequent itemsets were mined by running the GA as
many times as frequent itemsets that have been wanted to
obtain and this has a big computational cost.

Negative ARs are ARs between the antecedent and con-
sequent of the rule. Either the antecedent or consequent or
both have to be negated in order for the rule to be a negative
rule. There has been no work for mining negative quanti-
tative ARs, however these rules further complete associated
relationships among attributes as a system in science and
technology and, they offer more information that might be
of use in supporting decisions for applications. Furthermore,
sometimes intervals for attributes that conform rules may be
in [L, x1]∪[x2, U ] where x2 > x1, L is the lower bound and
U is upper bound of the attribute as shown in gray colored
area of Fig. 1.

Fig. 1 Negative interval

3 The proposed GA

In this work, a high-quality population, UP, in the begin-
ning has been generated and then the search of positive and
negative ARs has been started. The chromosomes of initial
population are far away from each others and dispersed the
feasible region uniformly. For mining all rules in a single GA
run, efficient techniques have been used. The flowchart of the
proposed GA is shown in Fig. 2. In each generation of GA,
two fittest chromosomes are selected for new operator called
UO and two genetic operators, crossover and mutation, are
performed to stochastically selected chromosomes for evo-
lution. In each iteration, the number of new chromosomes
is equal to the population size. Thus, the number of chromo-
somes in the population is doubled.At this stage, the rules are
evaluated and adjusted fitness value is computed. One half
of the high-quality chromosomes are retained and passed to
the next iteration. The whole process is performed iteratively
until the maximum number of generations is reached. The
main characteristics of this algorithm have been described in
the following subsections.

3.1 Encoding

In this work, the chromosomes that are being produced and
modified along the genetic process represent rules. Each chro-
mosome consists of genes that represent the items and inter-
vals. A positional encoding, where the i-th item is encoded
in the i-th gene has been used. Each gene has four parts. The
first part of each gene represents the antecedent or conse-
quent of the rule and can take three values: ‘0’, ‘1’ or ‘*’. If
the first part of the gene is ‘0’, it means that this item will be
in the antecedent of the rule and if it is ‘1’, this item will be
in the consequent of the rule. If it is ‘*’, it means that this
item will not be involved in the rule. All genes that have ‘0’
on their first parts will form the antecedent of the rule while
genes that have ‘1’on their first part will form the consequent
of the rule. Second part of the gene represents the positive
or negative ARs. This part can take two values: ‘0’ or ‘1’. If
the second part of the gene is ‘0’, this means that the interval
of this item will be negated in the rule, that is, it forms a
negative rule. If it is ‘1’ it will be used for mining positive
ARs. While the third part represents the lower bound, the
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Fig. 2 The flowchart of the proposed GA

Fig. 3 Chromosome representation

fourth part represents the upper bound of the item interval.
The structure of a chromosome has been illustrated in Fig. 3,
where m is the number of attributes of data being mined.

3.2 Initial population

All genetic solutions for any search problem have been done
by means of creating initial population randomly. However,
this kind of method has some drawbacks. Initial population
may be created in the infeasible region, or all chromosomes
in population may be in the nearest neighborhood and far
to solution, or search of solution may get a local solution
and this local solution can not be get rid of. In this work,
UP method was used to create initial population avoiding the
drawbacks of random initial population method.

For binary encoding, let x = (x1, x2, . . . , xn) be a row
vector (chromosome) and xi ∈ {0, 1}, 1 � i � n. There

is a parameter, r , for this method. If r = 1, then initially,
a chromosome is randomly created and then, inversion of
this chromosome is also selected as another chromosome. If
r = 2, then randomly created chromosome is divided into
two equal parts: First, the inversion of the first part is taken
to yield new chromosome. Taking inversion of the second
part will yield another new chromosome, and inversion of
all genes of randomly generated chromosome is also another
chromosome. Therefore, three extra chromosomes are de-
rived from randomly created chromosome. For example, a
population of size 4 × p is created from p randomly created
chromosomes (p is a positive integer) in case of r = 2. If
x is a randomly created chromosome, then the derived chro-
mosomes from x for r = 2 are shown in Fig. 4.

If there are r-dividing points, then the number of de-
rived chromosomes from randomly generated chromosome
is 2r − 1. Thus, the number of chromosomes in the initial
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Fig. 4 Derived chromosomes

population will be

(2r − 1) × p + p = p × 2r (1)

Here, p is the number of randomly generated chromo-
somes.

Inversion of the parts of the genes can be performed by the
rules shown in Table 1. “P ” means the parts of the genes and
“V ” means the possible values of these parts. k ∈ [0, 1] is a
random number. “L” is the lower bound and “U” is the upper
bound of the relevant interval of attribute. LBm and UBm are
the current values of the genes. From this table, for example,
it can be seen that inversion of “0” is “1”, inversion of “1” is
“*”, and inversion of “*” is “0” for AC part of the gene.

3.3 Fitness function

The mined rules have to acquire large support and confi-
dence. GA has been designed to find the intervals in each
of the attributes that conform an interesting rule, in such a
way that the fitness function itself is the one that decides the
amplitude of the intervals. That is why, the fitness value has
to appropriately shelter these and it has been shown in (2)

Fitness = α1 × cover (Ant+Cons) + α2

× cover(Ant+Cons)

cover(Ant)
− α3 × (NA − N(∗))

−α4 × Int (2)

This fitness function has four parts. Here, Ant and Cons
are distinct itemsets that are involved in the antecedent and
consequent part of the rule respectively. cover (Ant+Cons) is
ratio of the records that containAnt+Cons to the total number
of records in the database. The first part can be considered as
support of the rule that is statistical significance of an AR. In
fact, the second part can be considered as confidence value.
The third part is used for number of attributes in the chromo-
some. This parameter rewards the shorter rules with a smaller
number of attributes. NA is number of attributes in the data-
base and N(∗) is number of attributes that has ‘*’ in first
parts of genes of chromosomes. The motivation behind this
term is to bias the system towards slightly shorter rules. By
this term, readability, comprehensibility, and ease of under-
standing that are important in data mining are increased. It is

Table 1 Inversion rules

Part of genes AC PN LB UB

Values 0 1 * 0 1 LBm UBm

Inversion of values 1 * 0 1 0 k × (LBm − L) + L k × (U − UBm) + UBm

known that larger rules are more likely to contain redundant
or unimportant information, and this can obscure the basic
components that make the rule successful and efficiently pro-
cessable. The last part of the fitness is used to penalize the
amplitude of the intervals that conform the itemset and rule.
In this way, between two chromosomes that cover the same
number of records and have the same number of attributes,
the one whose intervals are smaller gives the best informa-
tion. Int has been computed in different ways for positive and
negative ARs as shown in (3) where ampm is the amplitude
factor determined for each attribute for balancing the effect
of Int to the fitness.

Int =






UBm−LBm

amp
m

if second part of the gene is 1

(UB−LB−(UBm−LBm))

amp
m

otherwise
(3)

α1, α2, α3, and α4 are user specified parameters and one
might increase or decrease the effects of parts of fitness func-
tion by means of these parameters.

For finding all interesting rules in the last generation of
GA, an adjusted fitness value has been computed after genetic
operators described in Sect. 3.4 have been performed. In the
computation of adjusted fitness, first, attributes of the records
covered by the best rules before genetic operators are marked
as A or C where A represents this attribute of the record is
covered by antecedent while C represents this is covered by
consequent of the rule. Then, chromosomes that cover the
attributes of the records covered by the obtained best rules
are penalized. This adjusted fitness factor affects negatively to
the fitness and indicates that attributes of the record have been
covered previously by the best rules. It has been achieved with
that the algorithm tends to discover different rules in later
generations. To penalize the chromosomes, a penalization
factor (α5) is used. Thus, the fitness value is computed as

Adjusted Fitness = Fitness − α5 ×
N∑

i=1

markedi (4)

where N is the number of the records. Here, the value markedi

that one chromosome will take for one record is:

markedi =
{

1 if Aj =A and Cj =C, Aj ∈ Ant and Cj ∈ Cons

0 otherwise
(5)

markedi is a binary value that indicates if the record has
already been covered by the best rule. If the marked attributes
of one record covered by both antecedent and consequent of
one chromosome, the fitness will be decreased.
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3.4 Genetic operators

In this work, tournament selection with tournament size of 10
and uniform crossover are used. However, the probability of
genes at division points of UP method to be exchanged is zero
for the first generation. Otherwise, same chromosomes might
be generated. With the mutation operator, parts of the genes
of the chromosomes that are AC, PN, LB, and UB are altered.
For the limit of the LB and UB, four different mutations have
been performed: shifting the whole interval to the left or to
the right and increasing or decreasing its size.

The value of mutation probability is increased as the
chromosomes become similar to each other. Namely, the
higher similarities of the fittest chromosome in the current
population, the higher the mutation probability used in that
generation. This adaptive mutation probability avoids the
convergence of the population to a single highly fit chromo-
some and forces the last generation to contain many, high-
quality chromosomes. It should be in mind that this mutation
should be used with an elitist strategy to avoid the loss of
the fittest chromosomes. This mutation approach allows that
last generation contains many high-quality chromosomes and
achieves an effect similar to niching but with less computa-
tional cost. By this operator and adjusted fitness approach, a
good rule does not replicate itself and dominate the popula-
tion as in conventional GA. Rather, several good rules have
been found and the population has been diversified.

To increase the quality of rules, finally adjusting the inter-
vals for the chosen chromosomes has been performed after
genetic search. This has been done by decreasing the size of
their intervals until the number of covered records be smaller
than the records covered by the original rules.

3.4.1 Uniform operator

In each generation, based on the problem, four or more high-
quality chromosomes from two different best chromosomes
are generated; genetic diversity is ensured for mining all in-
teresting rules by preventing early convergence. For the en-
coding proposed in this study, the positions of different val-
ues of the parts of the genes in these chromosomes are saved
and array the size of which is the number of positions that
have different values is generated. While AC and PN parts
are randomly generated, LB and UB parts are generated by
arithmetic mean. Then, from this array, four different arrays
are generated similar to UP method for r = 2 and the values
in these arrays are distributed to the relevant saved positions
in the best chromosomes.

For example, let C0 and C1 be the best two chromosomes
expressed with four genes in a generation as shown in Ta-
ble 2. Ten positions are different and are marked as “D” in
the fourth row of Table 1. Assume the lower bound as 0,
upper bound as 100, and k as 0.5. Ten values with respect
to the relevant parts of the genes are generated. Let this be[

0 25 55 ∗ 25 52 1 20 1 13
]
. For r = 2, other generated val-

ues are shown in Table 3 as Values2, Values3, and Values4.
These first generated values and otherValuesi (i = 1, 2, 3) that

are derived from these values are distributed to the positions
of the saved gene parts of one of the best chromosomes, and
generated new chromosomes are shown in Table 4.

3.5 Algorithm complexity

The comparison of the chromosome to the data records is the
most critical part of the algorithm complexity. This part of the
algorithm complexity strongly depends on four parameters:
the number of records in the database (NR), the number of
attributes in the database (NA), the population size (PS), and
number of generations (NG) within a given evolution process.
In each generation, the proposed algorithm scans the data
only once and matches all the chromosomes to the scanned
records. The population size is usually much smaller than
data sample size, that is why, it is much more efficient to
perform several scans on the population than to go through
the data many times. Here, the database is usually stored on a
disk and the population resides on computer memory. Since
the matching is nothing more but a value-to-gene comparison
of each chromosome in the population against each record in
the database, the total number of such comparisons (CN) is
given by:

CN = NR × NA × PS × NG (6)

The total complexity of this approach might seem quite
high at first. However, mining all interesting negative and
positive quantitative ARs involves confronting search spaces
of an exponential size. The execution of adjusted fitness com-
putation is faster than that of fitness sharing used for multi-
objective GA problems. To calculate the fitness of one chro-
mosome in fitness sharing, the similarity scores of all other
chromosomes with respect to this chromosome have to be cal-
culated. If a similarity score can be computed in time O(t),
and the population size is upop size, each chromosome needs
a time O(upop size×t) to calculate the similarity score, and
the time needed to complete fitness sharing in each genera-
tion is O(upop size2 × t). On the other hand, calculations
of similarity are not needed in adjusted fitness approach. The
required information of adjusted fitness approach is the list
of records that each chromosome covered. This information
is already stored during the evaluation process. If a chromo-
some covers nr records, a time of O(nr) is needed for signing
the records as covered, and adjusted fitness computation in
each generation can be completed in O(E × upop size),
where E is average value of nr. This computation is straight
forward and can be faster than fitness sharing if O(nr) <
O(upop size × t). This computation is clearly more effec-
tive than the GA proposed for mining only frequent itemsets
by executing the GA as many times as frequent itemsets those
have been wanted to obtain [5].

The proposed method directly mines the rules without
generating frequent itemsets, and one must keep in mind that
automatically finding the intervals in each of the attributes
that conforms interesting positive and negative ARs is a diffi-
cult problem and this approach is very efficient for this goal.
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Table 2 Best two chromosomes and differences

Gene1 Gene2 Gene3 Gene4

C0 0 0 20 70 1 1 30 60 * 1 25 45 0 1 10 60
C1 0 1 30 40 * 1 20 45 0 1 15 45 1 1 17 60
Y 0 D D D D 1 D D D 1 D 45 D 1 D 60

Table 3 Generated values for r = 2

First generated values 0 25 55 * 25 52 1 20 1 13

Values2 1 12 77 0 12 80 * 30 * 19
Values3 0 25 55 * 25 80 * 30 * 19
Values4 1 12 77 0 12 52 1 20 1 13

Table 4 New chromosomes

C00 0 0 25 55 * 1 25 52 1 1 20 45 1 1 13 60
C01 0 1 12 77 0 1 12 80 * 1 30 45 * 1 19 60
C02 0 0 25 55 * 1 25 80 * 1 30 45 * 1 19 60
C03 0 1 12 77 0 1 12 52 1 1 20 45 1 1 13 60

4 Experimental results

To verify that the proposed GA correctly finds positive and
negative quantitative ARs, a synthetic database was created
in which certain rules, previously fixed, were fulfilled in an
adequate number of records as to consider them interesting
ones. The goal was to find, in an accurate way, the rules.
Furthermore the GA was tested on records of the students
of Fırat University Electrical and Electronics Engineering
and databases on Bilkent University Function Approxima-
tion Repository [8]. The obtained results were commented
on following subsections.

4.1 Synthetic database

The created database has four quantitative attributes. 1000
records were distributed to best two positive and three nega-
tive ARs with 70% support and 100% confidence. The rules
pretended to be found are shown in Table 5. Note that all attri-
butes are in the interval [0, 100]. GA was executed with a UP
of 48 chromosomes (6 random chromosomes with r = 3) and
1,000 generations. The value of the mutation probability var-
ied from 5% (when the fittest chromosome has a single copy
in the current population) to 90% (when all chromosomes of
the current population are copies of the fittest chromosome).
Crossover probability was selected as 60%. α1, α2, α3, α4,
and α5 that have been used in fitness values were selected as
5, 20, 0.05, 0.02, and 0.01 respectively.

A characteristic of GA is that it is stochastic. Thus, the
used GA was larger fluctuations in different runs. In order

Table 5 The rules pretended to be found

A ∈ [10, 20] ⇒ C ∈ [15, 40]
C ∈ [25, 45] ⇒ B ∈ [40, 70]
¬D ∈ [15, 45] ⇒ C ∈ [20, 45]
¬C ∈ [45, 85] ⇒ ¬A ∈ [30, 95] ∧ B ∈ [50, 75]
¬C ∈ [10, 45] ⇒ D ∈ [25, 40]

to get a better result, the user may execute several trials of
the algorithm to get the result with the best fitness score. GA
was executed five times and the average values of such exe-
cution were presented. Table 6 shows the best rules found
by GA. Other chromosomes also represent different rules,
however here only the best five rules are shown. It can be
seen that support and confidence of the rules are very close
to predetermined values.

4.2 Real databases

To test the proposed method, records of the Electrical and
Electronic Engineering students’ class grades of Fırat Uni-
versity in Turkey were selected as sample database. More
information can be found at http://www.firat.edu.tr. Further-
more, some experiments were performed using the Bilkent
University FunctionApproximation Repository [8]. The used
student database was partitioned to eight parts such as “first
semester of first year”, “second semester of first year”, etc.
The number of records in each semester is shown in Table 7.

Table 6 Obtained best rules

Obtained Best Rules Supp (%) Conf (%)

A ∈ [10, 22] ⇒ C ∈ [16, 40] 68 91
C ∈ [19, 48] ⇒ B ∈ [44, 70] 63 88
¬D ∈ [15, 45] ⇒ C ∈ [20, 45] 70 100
¬C ∈ [45, 85] ⇒ ¬A ∈ [32, 95] ∧ B ∈ [50, 75] 69 87
¬C ∈ [12, 45] ⇒ D ∈ [25, 40] 68 98

Table 7 Number of records in each semester

Semester Number Semester Number
of records of records

1. Year 1. Semester 279 3. Year 1. Semester 170
1. Year 2. Semester 272 3. Year 2. Semester 166
2. Year 1. Semester 278 4. Year 1. Semester 157
2. Year 2. Semester 150 4. Year 2. Semester 161
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Table 8 Mined best ARs for two semesters

Semester Best Rules Support Confidence
(%) (%)

1

B comp techn∈[72,88]⇒Turkish lang1∈[50,74] 64 75
Turkish lang1∈[55,76]⇒B comp techn∈[69,88] 56 71

Foreign lang1∈[70,89]⇒B comp techn∈[52,79] 50 70
B comp techn∈ ¬[64, 84] ⇒ Foreign lang1∈ ¬ [54,80] 42 68

2

Turkish lang2 ∈[60, 72]⇒ G chemistry∈[38,76] 42 69
G chemistry∈[37,71] ⇒ Turkish lang2 ∈[60, 75] 49 68

Turkish lang2 ∈ ¬ [43, 70] ⇒Physics2∈ ¬ [38,61] 62 67
Turkish lang2 ∈ ¬ [50, 75] ⇒ G chemistry∈ ¬ [41,71] 60 60

Table 9 The used databases, number of rules, and confidence values

Database No. of No. of No. of Confidence
Records Attributes Rules

Basketball 96 5 24 59
Bolts 40 8 30 65
Pollution 60 16 32 68
Quake 2178 4 34 62
Sleep 62 8 29 63

Thus, rules were found for each semester. The same param-
eters used for synthetic database were used for GA to mine
interesting rules. Some of the best mined rules for two semes-
ters are shown in Table 8. Rules have both high support and
confidence values.

The proposed algorithm was also evaluated in five pub-
lic domain databases: Basketball, Bolts, Pollution, Quake,
Sleep. These databases are available from Bilkent Univer-
sity Function Approximation Repository. Table 9 shows the
number of records and number of numeric attributes for each
database as well as the mean number of found different high-
quality rules and the mean of confidence value of these rules.
Table 10 shows the comparison of obtained results from the
proposed method and the GAR algorithm proposed in [7].
Note that GAR discovers only the positive frequent item-
sets, not negative rules. The value of the column Support(%)
indicates the mean of support, while the value of the column
Size shows the mean number of attributes contained in the
itemsets or rules. The column Amplitude (%) indicates the
mean size of the intervals that conforms the set. The proposed
GA has found rules with high values of support in two out
of five databases and the difference is not significant due to
finding both positive and negative rules. However, it found
the rules without expanding the intervals in excess. The size

Table 10 Comparison of the obtained results

Database Support (%) Size Amplitude (%)

This work GAR This work GAR This work GAR

Basketball 31,59 36,69 3,21 3,38 20 25
Bolts 27,18 25,97 5,14 5,29 27 34

Pollution 30,08 46,55 6,21 7,32 14 15
Quake 34,91 38,65 2,1 2,33 19 25
Sleep 37,32 35,91 4,19 4,21 4 5

and amplitude values obtained from this method are smaller
than GAR. Thus, the discovered rules are more readable and
comprehensible.

5 Conclusions

In this paper, an efficient GA for quantitative AR mining
problem has been proposed. Not only positive but also nega-
tive quantitative ARs within databases have been mined. GA
has been designed to simultaneously search for intervals of
quantitative attributes that conforms a rule, in such a way that
the fitness function itself is the one that decides the ampli-
tude of the intervals. In this way, the problem of finding rules
only with the intervals created before starting the process that
have been used in the literature has been avoided. Contrary
to the methods used as usual, ARs with high support and
confidence have directly been mined without generating fre-
quent itemsets and relying upon the minimum support and
the minimum confidence thresholds that are hard to deter-
mine for each database has been performed.

Instead of randomly generated initial population, uniform
population that forces the initial population to be not far away
from the solutions and distributes it in the feasible region uni-
formly has been used. An adaptive mutation probability, uni-
form operator, and an efficient adjusted fitness function have
been used for mining all interesting ARs from the last pop-
ulation in only single run of GA. The execution of adjusted
fitness computation is faster than that of fitness sharing used
for multi-objective GA problems. This approach is also more
efficient than executing the GA as many times as frequent
itemsets or rules those have been wanted to obtain. Several
tests have been performed to check the GA in synthetic and
real databases and satisfactory results have been obtained.
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The proposed method has a very appropriate structure
for parallel or distributed architectures and we plan a par-
allel implementation of this method with more elaborated
experiments by using optimized parameters and embedding
new interestingness measures into fitness function for differ-
ent task of data mining such as sequential patterns, classifi-
cation, and clustering.

Appendix

Algorithm GAR
nItemset = 0
while (nItemset < N) do

nGen = 0
generate first population P(nGen)
while (nGen < NGENERATIONS) do

process P(nGen)
P(nGen+1) = select chromosomes of P(nGen)
complete P(nGen+1) by crossover
make mutations in P(nGen+1)
nGen++

end while
I[nItemset] = choose the best of P(nGen)
penalize records covered by I[nItemset]
nItemset++

end while

Algorithm GAR [7] finds only positive frequent item-
sets. Positive rules are built departing from them. First, initial
population is generated and the fitness of each chromosome
is computed. Then selection, crossover, and mutation are

carried out.The highest-quality chromosome that corresponds
to one of the positive frequent itemsets is selected. The pro-
cess is repeated until the desired number of frequent itemsets
N is obtained. Records covered by the obtained itemsets in
the previous steps are penalized to prevent finding the same
itemsets in later executions of GA. Elitist strategy, uniform
crossover, and mutation operator that alters one or more genes
of chromosome are used.
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